
A Formal Web Services Architecture Model
for Changing PUSH/PULL Data Transfer

Naoya Nitta1, Shinji Kageyama1, and Kouta Fujii1

Konan University, 8-9-1, Okamoto, Kobe, Japan
n-nitta@konan-u.ac.jp, m2124002@a.konan-u.ac.jp, m2224001@s.konan-u.ac.jp

A Appendix: Equivalence of JAX-RS Prototype and
Data Transfer Architecture Model

In this appendix, we show the detailed ones of the proofs shown in Sec. 6 in the
conference paper.

A.1 Equivalence of PUSH-first JAX-RS Prototype

First, we prove the equivalence between a data transfer architecture model and
the generated PUSH-first prototype. Let R be any data transfer architecture
model, r be a resource in R and PR be a JAX-RS prototype generated from
R. Then, Φ(PR, r) represents the class in PR corresponding to r, PR \Φ(PR, r)
represents the JAX-RS prototype obtained by removing Φ(PR, r) from PR, and
trimR(·) represents an operation on a JAX-RS prototype that removes all calls
and all method bodies that are not relevant to R. More specifically, for any re-
source r that is not contained in R and the class Pr corresponding to r, trimR(·)
removes all calls to the update method of Pr and all method bodies of update
methods called only by Pr.

Lemma 1. Given an arbitrary valid data transfer architecture model R = ⟨R,C,
ρ, T, τ, µ,Σ,∆, Γ, s0⟩, for any state s and any resource r ∈ R,

PPSH
R (s, x1, . . . , xL)

get(r)/s(r)
=⇒ PPSH

R (s, x1, . . . , xL).

Proof. The lemma directly follows from the implementation of the getter method
of PPSH

R . ⊓⊔

Lemma 2. Given an arbitrary valid data transfer architecture model R = ⟨R,C,
ρ, T, τ, µ,Σ,∆, Γ, s0⟩, let R′ be the data transfer architecture model obtained
by removing a resource r̃ that satisfies OutC(r̃) = ∅ from R. Let PPSH

R′ =
trimR′(PPSH

R \ Φ(PPSH
R , r̃)). Then, for any state s of R and any input message

̂⟨m, cI/O⟩ for PPSH
R (s) and PPSH

R′ (s), if there exists a state s′ of R and

PPSH
R (s)

̂⟨m,cI/O⟩
=⇒ PPSH

R (s′),

then

PPSH
R′ (s)

̂⟨m,cI/O⟩
=⇒ PPSH

R′ (s′)

2 N. Nitta et al.

holds.
In addition, for any resource r ∈ R\{r̃}, the control reaches Φ(PPSH

R , r) from
PPSH
R (s) by ̂⟨m, cI/O⟩ if and only if the control reaches Φ(PPSH

R , r) from PPSH
R′ (s)

by ̂⟨m, cI/O⟩.

Proof. On the assumption that the condition part of the lemma holds, we prove
the conclusion part of the lemma for two cases that the control reaches Φ(PPSH

R , r̃)

from PPSH
R (s) by ̂⟨m, cI/O⟩ and that the control does not reach Φ(PPSH

R , r̃) on
the same condition.

If the control does not reach Φ(PPSH
R , r̃), then

(PPSH
R \ Φ(PPSH

R , r̃))(s)
̂⟨m,cI/O⟩
=⇒ (PPSH

R \ Φ(PPSH
R , r̃))(s′)

holds, and since this relation is preserved by trimR′ , also

PPSH
R′ (s) = trimR′(PPSH

R \ Φ(PPSH
R , r̃))(s)

̂⟨m,cI/O⟩
=⇒ trimR′(PPSH

R \ Φ(PPSH
R , r̃))(s′) = PPSH

R′ (s′)

holds. By this and that resource r that satisfies r ∈ R \ {r̃} is contained in R′,
the control reaches Φ(PPSH

R , r) from PPSH
R (s) by ̂⟨m, cI/O⟩ if and only if it reaches

Φ(PPSH
R , r) from PPSH

R′ (s) by ̂⟨m, cI/O⟩.
If the control reaches Φ(PPSH

R , r̃), then a method of Φ(PPSH
R , r̃) is called

just before the control reaches Φ(PPSH
R , r̃). From the definition of PPSH

R , the
called method is the update method of Φ(PPSH

R , r̃). Since every call to the
update method is removed by applying trimR′ , any program execution from
trimR′(PPSH

R \ Φ(PPSH
R , r̃))(s) never terminates at a call to the update method.

On the other hand, since there is no c ∈ C such that r̃ ∈ ρ(c, I), any call of an
update method from Φ(PPSH

R , r̃) is not contained in any program execution from
PPSH
R (s). Thus, the program execution from trimR′(PPSH

R \ Φ(PPSH
R , r̃))(s) that

is obtained by removing the class corresponding to r̃ is never shortened from the
original transition sequence from PPSH

R (s). Therefore,

PPSH
R′ (s) = trimR′(PPSH

R \ Φ(PPSH
R , r̃))(s)

̂⟨m,cI/O⟩
=⇒ trimR′(PPSH

R \ Φ(PPSH
R , r̃))(s′) = PPSH

R′ (s′)

holds, and for any r that satisfies r ∈ R \ {r̃}, the control reaches Φ(PPSH
R , r)

from PPSH
R (s) by ̂⟨m, cI/O⟩ if and only if it reaches Φ(PPSH

R , r) from PPSH
R′ (s) by

̂⟨m, cI/O⟩. ⊓⊔

Lemma 3. Given an arbitrary valid data transfer architecture model R = ⟨R,C,
ρ, T, τ, µ,Σ,∆, Γ, s0⟩, for any state s, input channel cI/O and message m,

PPSH
R (s)

̂⟨m,cI/O⟩
=⇒ PPSH

R (s′) iff s
⟨m,cI/O⟩
−→
R

s′.

In addition, let π be a message assignment when s
⟨m,cI/O⟩
−→
R

s′ holds. Then,
for any resource r ∈ R,

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 3

1. if there exists a channel c ∈ C such that r ∈ ρ(c,O) and π(c) ̸= ec, then the
control reaches Φ(PPSH

R , r) from PPSH
R (s) by ̂⟨m, cI/O⟩,

2. otherwise the control does not reach Φ(PPSH
R , r) from PPSH

R (s) by ̂⟨m, cI/O⟩
and s(r) = s′(r) holds.

Proof. The lemma is proved by induction on the number n = |R| of the resources.
(basis) We assume that R has one resourse and only input channels, that is,
R = {r}, C = CI/O and ρ(c,O) = {r} for any c ∈ C. Let C = {c1, . . . , cn}.

Here, with respect to R, if s
⟨m,ci⟩−→

R
s′ holds (for some i s.t. 1 ≤ i ≤ n), then

s′(r) = δci,Or (s(r),m) holds by equation (2). On the other hand, with respect to
the PUSH-first JAX-RS prototype PPSH

R (s) of R,

PPSH
R (s)

input_on_ci(r,m)/void
−−−−−−−−−−−−−−−→ PPSH

R (s′′)

holds by the generation of the PUSH-first prototype, where s′′(r) = δci,Or (s(r),m).
Here, since R has only one resource r, s′ = s′′ follows from s′(r) = s′′(r), and
the first part of the lemma holds. Furthermore, the control reaches Φ(PPSH

R , r)
from PPSH

R (s) because an input method of Φ(PPSH
R , r) is called by

input_on_ci(r,m)/void. Since r ∈ ρ(ci,O) and π(ci) = m ̸= eci , also the second
part of the lemma holds.
(induction step) For R, there exists R′ = ⟨R′, C ′, ρ′, T, τ, µ,Σ,∆′, Γ, s′0⟩ that
satisfies the following conditions (see Fig. 1) and the induction hypothesis holds
for R′.

– There exists an appropriate r ∈ R, there is no c′ ∈ C such that r ∈ ρ(c′, I)
and R′ = R \ {r} holds.

– For any c ∈ C that satisfies r ∈ ρ(c,O),
• if ρ(c,O) = {r} holds, then c ̸∈ C ′ holds, and
• if ρ(c,O) ⊃ {r} holds, then c ∈ C ′ and ρ′(c,O) = ρ(c,O) \ {r} hold.

First, we prove the lemma with respect to the reachability of the control.
We prove this for two cases that there exists c ∈ C such that r ∈ ρ(c,O) and
π(c) ̸= ec, and that there does not exist.
(i) If there exists some c ∈ C such that r ∈ ρ(c,O) and π(c) ̸= ec:
Also, we prove the case for two cases that c ∈ CI/O and that c ̸∈ CI/O.
(i.a) If c ∈ CI/O:
Since c ∈ CI/O and π(c) ̸= ec, c = cI/O and π(c) = m. By the generation
of the PUSH-first prototype, there exists an input method input_on_cI/O in
Φ(PPSH

R , r). Thus, the method is called by input_on_cI/O(r,m)/void, and the
control reaches Φ(PPSH

R , r) by ̂⟨m, cI/O⟩.
(i.b) If c /∈ CI/O:
There exist channel c′ ∈ C and resource rj in R that satisfy rj ∈ ρ(c, I),
rj ∈ ρ(c′,O) and π(c′) ̸= ec′ from π(c) ̸= ec and the definition of π. By the in-
duction hypothesis, the control reaches Φ(PPSH

R′ , rj) from PPSH
R′ (s) by ̂⟨m, cI/O⟩.

By lemma 2, also, the control reaches Φ(PPSH
R , rj) from PPSH

R (s) by ̂⟨m, cI/O⟩.

4 N. Nitta et al.

r

crjc'

RR'

Fig. 1: Proof of lemma 3

On the other hand, by the generation of the PUSH-first prototype, Φ(PPSH
R , rj)

has an update method update_from_r′ where r′ ∈ ρ(c′, I) if c′ /∈ CI/O, or an
input method input_on_c′ if c′ ∈ CI/O. In addition, both of these methods
call an update method update_from_rj in Φ(PPSH

R , r). Since the control reaches
Φ(PPSH

R , rj) from PPSH
R (s) by ̂⟨m, cI/O⟩, update_from_rj in Φ(PPSH

R , r) is called
and the control also reaches Φ(PPSH

R , r).
(ii) If there does not exist c ∈ C such that r ∈ ρ(c,O) and π(c) ̸= ec:
For any c such that r ∈ ρ(c,O), π(c) = ec holds, and GR,cI/O does not contain
c by the definition of π. It is clear that the control does not reach Φ(PPSH

R , r)
since c ̸= cI/O even if c ∈ CI/O. In addition, GR,cI/O does not contain any rj and
any c′ that satisfy rj ∈ ρ(c, I) and rj ∈ ρ(c′,O). Hence, π(c′) = ec′ holds for any
c′, and by the induction hypothesis, there does not exist Φ(PPSH

R′ , rj) that the
control reaches from PPSH

R′ (s). Furthermore, by lemma 2, also, there does not
exist Φ(PPSH

R , rj) that the control reaches from PPSH
R (s). Therefore, the control

does not reach Φ(PPSH
R , r) from PPSH

R (s) by ̂⟨m, cI/O⟩.

Second, we prove the lemma with respect to equivalence of the transition
relations. We prove this for two cases that there exists c ∈ C such that r ∈ ρ(c,O)
and π(c) ̸= ec and that there does not exist.
(i) If there exists c ∈ C such that r ∈ ρ(c,O) and π(c) ̸= ec:
Let sR = s and s′R = s′ to distinguish the states of R from those of R′.
(i.a) If c /∈ CI/O:

δc,Or (sR(r), π(c)) = s′R(r) (6)
holds by equation (2) because GR,cI/O contains c. Also, there exist rj and c′ that
satisfy rj ∈ ρ(c, I), rj ∈ ρ(c′,O) and π(c′) ̸= ec′ , and

δc,Irj (sR(rj), π(c)) = s′R(rj) (7)

holds. Let y′ be the next state of rj in R′. Then,

y′ = δc
′,O

rj (sR′(rj), π(c
′)) = s′R′(rj) = s′R(rj) (8)

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 5

holds since sR′(rj) = sR(rj). On the other hand, with respect to PPSH
R′ , the

control reaches Φ(PPSH
R′ , rj) from PPSH

R′ (sR′) by the induction hypothesis since
π(c′) ̸= ec′ . Also with respect to PPSH

R , the control reaches Φ(PPSH
R , rj) from

PPSH
R (sR) by lemma 2. Thus, the update method of Φ(PPSH

R , r) is called by
Φ(PPSH

R , rj). Let x′ be the state just after the update method is called. Then,

x′ = δc,Or (sR(r),mc) (9)

holds for some message mc by the generation of the PUSH-first prototype. Fur-
thermore,

y′ = δc,Irj (sR(rj),mc) (10)

holds by the induction hypothesis of equivalence of the transition relations. By
equations (8) and (10), we have

s′R(rj) = δc,Irj (sR(rj),mc). (11)

In addition, by comparing equations (7) and (11), and equation (1),

mc = π(c)

holds. By equation (6) we have,

s′R(r) = δc,Or (sR(r),mc). (12)

Since by equations (9) and (12),

x′ = s′R(r) (13)

holds, PPSH
R (sR)

̂⟨m,cI/O⟩
=⇒ PPSH

R (s′R) holds.
(i.b) If c ∈ CI/O:

δc,Or (sR(r),m) = s′R(r) (14)

holds by equation (2) since GR,cI/O contains c by c = cI/O. Then,

x′ = δc,Or (sR(r),m) (15)

holds by the generation of the PUSH-first prototype because the input method of
Φ(PPSH

R , r) is called from PPSH
R (sR) (where x′ is the state of r after the method

is called). By equations (14) and (15), we have x′ = s′R(r).
(ii) If there does not exist c ∈ C such that r ∈ ρ(c,O) and π(c) ̸= ec:
s(r) = s′(r) holds for R by the definition of π.
(ii.a) If c ∈ CI/O:
The control does not reach Φ(PPSH

R , r) from PPSH
R (s) because GR,cI/O does not

contain c and c ̸= cI/O.
(ii.b) If c ̸∈ CI/O:
GR,cI/O does not contain any resource rj and any channel c′ such that rj ∈
ρ(c, I) and rj ∈ ρ(c′,O). Hence, the control does not reach any Φ(PPSH

R′ , rj) from
PPSH
R′ (s) by the induction hypothesis and π(c′) = e′c. Also, the control does not

6 N. Nitta et al.

reach any Φ(PPSH
R , rj) from PPSH

R (s) by lemma 2. Therefore, the control does
not reach Φ(PPSH

R , r) from PPSH
R (s) and

s(r) = s′(r) = s′′(r) (16)

holds for the transition of PPSH
R from state s to s′′.

From (i) and (ii), for any state s, input channel cI/O and message m,

PPSH
R (s)

̂⟨m,cI/O⟩
=⇒ PPSH

R (s′) iff s
⟨m,cI/O⟩
−→
R

s′. ⊓⊔

Theorem 1. Let R = ⟨R,C, ρ,D, τ, µ,∆, s0⟩ be an arbitrary valid data transfer
architecture model. Then, for any input sequence σ, PPSH

R (s0)
σ̂

=⇒ PPSH
R (s) iff

s0
σ

=⇒
R

s.

Proof. The lemma follows from lemmas 1 and 3. ⊓⊔

A.2 Equivalence of Arbitrary JAX-RS Prototype

Next, we prove the equivalence between the generated PUSH-first prototype and
any PULL-containing prototype.

Lemma 4. Given an arbitrary valid data transfer architecture model R = ⟨R,C,
ρ, T, τ, µ,Σ,∆, Γ, s0⟩, let PR be an arbitrary JAX-RS prototype that is generated
from R and satisfies conditions 1 and 2. Also, let R′ be the data transfer ar-
chitecture model obtained by removing a resource r̃ that satisfies OutC(r̃) = ∅
from R. Let PR′ = trimR′(PR \ Φ(PR, r̃)). Then, for any state s of R and any
input message sequence σ for PR and PR′ , if there exists some state s′ of R and
PR(s)

σ
=⇒ PR(s′) holds, then PR′(s)

σ
=⇒ PR′(s′).

Proof. The lemma is proved by induction on the length n of σ.
(basis)
If n = 0, then the lemma follows from the definition of PR′ .
(induction step)
If n > 0, then first, let σ = σ′ ⟨m, cI/O⟩. Next, similar to lemma 2, we prove the
induction step for two cases that the control reaches Φ(PPSH

R , r̃) from PPSH
R (s) by

⟨m, cI/O⟩ and that the control does not reach Φ(PPSH
R , r̃) on the same condition.

⊓⊔

Lemma 5. Let R = ⟨R,C, ρ, T, τ, µ,Σ,∆, Γ, s0⟩ be an arbitrary valid data trans-
fer architecture model and R′ be the data transfer model obtained by removing r̃
that satisfies OutC(r̃) = ∅ from R. Also, let R′ = R \ {r̃} be the set of resource
of R′. Then, any JAX-RS prototypes PR and P ′

R that are generated from R
and satisfy conditions 1 and 2 satisfy

∀σ.∀r∈R. {sr | ∃s.PR(s0)
σ⇒ PR(s)

get(r)/sr
=⇒ PR(s)}

= {s′r | ∃s′ .P ′
R(s0)

σ⇒ P ′
R(s′)

get(r)/s′r=⇒ P ′
R(s′)}

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 7

if any JAX-RS prototypes PR′ and P ′
R′ that are generated from R′ and satisfy

conditions 1 and 2 satisfy

∀σ.∀r∈R′ . {sr | ∃s.PR′(s0)
σ⇒ PR′(s)

get(r)/sr
=⇒ PR′(s)}

= {s′r | ∃s′ .P ′
R′(s0)

σ⇒ P ′
R′(s′)

get(r)/s′r=⇒ P ′
R′(s′)}.

Proof. On the assumption that the condition part of the lemma holds, we prove
its conclusion part by induction on the length n of σ in the conclusion part.
(basis)
If n = 0, then since lemma 4 holds, it is sufficient to show that sP,ϵ

r̃ = sP
′,ϵ

r̃ holds

for r̃ if PR(s0)
get(r̃)/sP,ϵ

r̃=⇒ PR(s0) and P ′
R(s0)

get(r̃)/sP
′,ϵ

r̃=⇒ P ′
R(s0) hold.

First, consider a channel c ∈ C such that r̃ ∈ ρ(c, I), and let {r1, . . . , rl} =
ρ(c, I). Then, in PR, if ⟨rj , c⟩ ̸∈ EPLL for any rj (1 ≤ j ≤ l), then by the
generation of the PUSH-first prototype,

sP,ϵ
r̃ = s0(r̃) (17)

holds. Next, in P ′
R, if ⟨rj , c⟩ ∈ EPLL for some rj (1 ≤ j ≤ l), then by the

generation of a PULL-containing prototype,

sP
′,ϵ

r̃ = fr̃(s0(r1), . . . , s0(rl)). (18)

Therefore, by equations (17), (18) and equation (3) in condition 2, sP,ϵ
r̃ = sP

′,ϵ
r̃

holds.
On the other hand, also in PR, if ⟨ri, c⟩ ∈ EPLL for some ri (1 ≤ i ≤ l), then

by the generation of a PULL-containing prototype and the initial conditions of
the caches within r̃, sP,ϵ

r̃ = fr̃(s0(r1), . . . , s0(rl)) = sP
′,ϵ

r̃ holds.
(induction step)
If n > 0, then let σ = σ′ ⟨m, cI/O⟩. Note that the length of σ′ is n − 1. Since
lemma 4 holds, it is sufficient to show that only for r̃, the conclusion part of
the lemma holds. In the following, we show that sP,σ

r̃ = sP
′,σ

r̃ where sP,σ
r̃ and

sP
′,σ

r̃ are the responses of requesting get(r̃) just after inputting σ to JAX-RS
prototypes PR and P ′

R, respectively.
Consider the case that there exists exactly one c ∈ C such that r̃ ∈ ρ(c,O)

and let {r1, . . . , rl} = ρ(c, I) (see Fig. 2). We prove the above equation for the
following three cases.

1. With respect to both PR and P ′
R, ⟨rj , c⟩ ̸∈ EPLL for every rj (1 ≤ j ≤ l).

2. With respect to only PR, ⟨rj , c⟩ ̸∈ EPLL for every rj (1 ≤ j ≤ l).
3. With respect to both PR and P ′

R, ⟨rj , c⟩ ∈ EPLL for some rj (1 ≤ j ≤ l).

Note that if there exists more than one c ∈ C such that r̃ ∈ ρ(c,O), then by
condition 1-(2), for any c, ⟨rj , c⟩ ̸∈ EPLL must be satisfied for any rj (1 ≤ j ≤ l),
and thus, this condition corresponds to the above 1).

8 N. Nitta et al.

~r

r'

c

r
1

rl

rj

RR'

Fig. 2: Proof of lemma 5

First, we consider the most typical case 2). In this case, the class Φ(PR, r̃) of
PR has a state field. Thus, by the generation of PUSH-first prototype, the latest
state of Φ(PR, r̃) just after inputting σ′ becomes sP,σ′

r̃ , and by the induction
hypothesis, we have

sP,σ′

r̃ = sP
′,σ′

r̃ . (19)

On the other hand, with respect to P ′
R, since ⟨rj , c⟩ ∈ EPLL for some rj (1 ≤

j ≤ l), by the generation of PUSH-first prototype, the latest state of Φ(P ′
R, rj)

just after inputting σ′ to P ′
R becomes sP

′,σ′

rj . As rj ∈ R′, the condition part of
the lemma holds for σ′ and rj , and by lemma 4, we have

sP
′,σ′

rj = sP,σ′

rj . (20)

Furthermore, by the generation of a PULL-containing prototype,

fr̃(s
P′,σ′

r1 , . . . , sP
′,σ′

rl
) = sP

′,σ′

r̃ (21)

holds. Next, consider the state of PR just after σ is input. Then, by the generation
of PUSH-first prototype, the response sP,σ

r̃ of the getter method of Φ(PR, r̃)
becomes

sP,σ
r̃ = δc,Or̃ (sP,σ′

r̃ ,m) (22)

and the response of the getter method of Φ(PR, rj) becomes

sP,σ
rj = δc,Irj (s

P,σ′

rj ,m) (23)

for an appropriate message m on channel c. Moreover, consider the state of P ′
R

just after σ is input. Then, by the generation of a PULL-containing prototype,
the response sP

′,σ
r̃ of the getter method of Φ(P ′

R, r̃) becomes

sP
′,σ

r̃ = fr̃(s
P′,σ
r1 , . . . , sP

′,σ
rl

). (24)

As rj ∈ R′, the condition part of the lemma holds for σ and rj , and by lemma
4,

sP
′,σ

rj = sP,σ
rj (25)

A Formal Web Services Architecture Model for PUSH/PULL Data Transfer 9

holds. Here, by equations (20), (23)-(25), we have

sP
′,σ

r̃ = fr̃(δ
c,I
r1 (s

P′,σ′

r1 ,m), . . . , δc,Irl
(sP

′,σ′

rl
,m)), (26)

and also by equations (19), (21) and (22), we have

sP,σ
r̃ = δc,Or̃ (fr̃(s

P′,σ′

r1 , . . . , sP
′,σ′

rl
),m). (27)

Therefore, it follows from equations (26), (27) and equation (4) of condition 2
that sP,σ

r̃ = sP
′,σ

r̃ .
In case 1), both the classes Φ(PR, r̃) of PR and Φ(P ′

R, r̃) of P ′
R have state

fields. As is the case with 2), by the induction hypothesis, equation (19) holds,
and by the condition part of the lemma and lemma 4, equations (20) and (25)
hold. With respect to the state of PR just after σ is input, equations (22) and
(23) hold, and with respect to the state of P ′

R just after σ is input,

sP
′,σ

r̃ = δc,Or̃ (sP
′,σ′

r̃ ,m′), (28)

sP
′,σ

rj = δc,Irj (s
P′,σ′

rj ,m′) (29)

hold for an appropriate message m′ on channel c. Hence, by equations (20), (23),
(25) and (29), m = m′ holds. Thus, it follows from equations (19), (22) and (28)
that sP,σ

r̃ = sP
′,σ

r̃ .
In case 3), with respect to the state of PR just after σ is input, by the

generation of the PUSH-first prototype, both the response of the getter method
of each class Φ(PR, ri) (1 ≤ i ≤ l) and its internal state (if it is stored) become
sP,σ
ri . Similarly, with respect to the state of P ′

R just after σ is input, by the
generation of the PUSH-first prototype, both the response of the getter method
of each class Φ(P ′

R, ri) (1 ≤ i ≤ l) and its internal state (if it is stored) become
sP

′,σ
ri . Furthermore, by lemma 4 and the condition part of the lemma, we have

sP,σ
ri = sP

′,σ
ri . (30)

Therefore, by the generation of a PULL-containing prototype and equation (30),
the responses of the getter methods of Φ(PR, r̃) and Φ(P ′

R, r̃) just after σ is
input become

sP,σ
r̃ = fr̃(s

P,σ
r1 , . . . , sP,σ

rl
) = fr̃(s

P′,σ
r1 , . . . , sP

′,σ
rl

) = sP
′,σ

r̃ . (31)

⊓⊔

Theorem 2. Let R = ⟨R,C, ρ,D, τ, µ,∆, s0⟩ be an arbitrary valid data transfer
architecture model, and PR be any JAX-RS prototype generated from R and
satisfying conditions 1 and 2. Then, PPSH

R and PR satisfy

∀σ.∀r∈R. {sr | ∃s.PPSH
R (s0)

σ⇒ PPSH
R (s)

get(r)/sr
=⇒ PPSH

R (s)}

= {s′r | ∃s′ .PR(s0)
σ⇒ PR(s′)

get(r)/s′r=⇒ PR(s′)}.

10 N. Nitta et al.

Proof. The theorem is proved by induction on the number n = |R| of the re-
sources and lemma 5.
(basis)
Assume that R has exactly one resource and exactly one channel as an I/O
channel, that is, C = {cI/O}, R = {r} and ρ(cI/O,O) = {r}. Then, since there
is no data transfer and always PR = PPSH

R holds, the lemma obviously holds.
(induction step)
If n > 1, then since the dataflow graph GR of R has no strongly connected com-
ponent, there exists at least one resource r̃ such that OutC(r̃) = ∅. Let R′ be the
data transfer architecture model obtained by removing r̃ from R. Then, since
the number of resources of R′ is |R \ {r̃}| = n− 1, by the induction hypothesis,
the lemma holds for R′. Furthermore, by lemma 5, the lemma also holds for
R. ⊓⊔

Theorem 3. Let R = ⟨R,C, ρ,D, τ, µ,∆, s0⟩ be an arbitrary valid data transfer
architecture model, and PR be any JAX-RS prototype generated from R and
satisfying conditions 1 and 2. For an arbitrary input sequence σ, s0

σ
=⇒
R

s holds

if and only if there exists a state s′ of PR such that PR(s0)
σ̂⇒ PR(s′)

get(r)/s(r)
=⇒

PR(s′) holds for any resource r ∈ R.

Proof. The theorem follows from the theorems 1 and 2. ⊓⊔

